1. 细胞打印-肝脏打印: Yang, H., Sun, L., Pang, Y., Hu, D., Xu, H., Mao, S., Peng, W., Wang, Y., Xu, Y., Zheng, Y.C. and Du, S., 2020. Three-dimensional bioprinted hepatorganoids prolong survival of mice with liver failure. Gut.
2. 细胞打印-干细胞打印: Yang J, Yang K, Man W, et al. 3D bio-printed living nerve-like fibers refine the ecological niche for long-distance spinal cord injury regeneration[J]. Bioactive Materials, 2023, 25: 160-175.
3. 细胞打印-干细胞打印: Ouyang, L., Yao, R., Chen, X., Na, J. and Sun, W., 2015. 3D printing of HEK 293FT cell-laden hydrogel into macroporous constructs with high cell viability and normal biological functions. Biofabrication, 7(1), p.015010.
4. 细胞打印-干细胞打印: Li, Y., Jiang, X., Li, L., Chen, Z.N., Gao, G., Yao, R. and Sun, W., 2018. 3D printing human induced pluripotent stem cells with novel hydroxypropyl chitin bioink: scalable expansion and uniform aggregation. Biofabrication, 10(4), p.044101.
5. 细胞打印-神经细胞打印: Yongcong Fang, Wang Chengjin, Liu Zibo, et al. 3D Printed Conductive Multiscale Nerve Guidance Conduit with Hierarchical Fibers for Peripheral Nerve Regeneration. Advanced Science, 2023, 2205744.
6. 细胞打印-神经细胞-Chen, W., Gai, Ke., Lin, F., Sun, W., Song, Y.: “Culture models produced via biomanufacturing for neural tissue-like constructs based on primary neural and neural stem cells”, Brain Science Advances, 2021, 7 (4): 220-238. https://doi.org/10.26599/BSA.2021.9050021.
7. 细胞打印-组织工程-Lin, JT, Sun, Antonia RuJia, Li, Jian, Yuan, Tianying, Cheng, Wenxiang, Ke, Liqing, Chen, Jianhai, Sun, W., Mi, Shengli, Peng, Zhang, “A Three-Dimensional Co-Culture Model for Rheumatoid Arthritis Pannus Tissue”, Frontiers in Bioengineering and Biotechnology, section Tissue Engineering and Regenerative Medicine,2021,Vol. 9, Nov. , Article 764212, doi: 10.3389/fbioe.2021.764212.
8. 细胞打印-He, Jianyu, Pang, Yuan, Yang, Huayu, Montagne, Kevin, Shinohara, Marie, Mao, Yilei, Sun, W. and Sakai, Yasuyuki, “Modular assembly–based approach of loosely packing co-cultured hepatic tissue elements with endothelialization for liver tissue engineering”, Annals of Translational Medicine, 2020, 8(21), WOS: 000590231200005.
9. 细胞打印-神经细胞-Song, Yu; Su, Xiaolei; Firouzian, Kevin; Fang, Yongcong; Zhang, Ting; Sun, Wei:” Engineering of Brain-like Tissue Constructs via 3D Cell-printing Technology”, Biofabrication 12 (2020) 035016, doi.org/10.1088/1758-5090/ab7d76.
10. 细胞打印-Li, Y., Zhang, T., Peng, Y., Li, L, Chen, ZN and Sun, W., “3D Bioprinting of hepatoma cells and application with microfluidics for pharmacodynamic test of Metuzumab”, Biofabrication, 11(3), 2019, 034102.
11. 细胞打印-Li, Y., Yao, R. Jiang, X.L., Li, L., Chen, ZN., Gao, G. and Sun, Wei, “3D Printing human induced pluripotent stem cells with novel hydroxypropyl chitin bioink: Scalable expansion and uniform aggregation”, Biofabrication 2018, 10, 044101.
12. 生物材料打印-新型生物材料: He, Y., Li, J., Zhang, L., Zhu, X., Pang, Y., Fu, Q., Liao, Q., 2023. 3D-printed GA/PPy aerogel biocathode enables efficient methane production in microbial electrosynthesis. ScienceDirect.
13. 生物材料打印-新型生物材料: Zhou Y, Liao S, Chu Y, et al. An injectable bioink with rapid prototyping in the air and in-situ mild polymerization for 3Dbioprinting[J]. Biofabrication.
14. 生物材料打印: Liu, D., Guo, R., Mao, S., Huang, Y., Wang, B., Wu, Z., Xia, X., Dong, J., Xin, Y., Xie, R., Shou, J., Sun, W., Pang, Y., and Lu, Y., 2022. 3D magnetic field guided sunflower-like nanocatalytic active swarm targeting patients-derived organoids. Nano Research.
15. 生物材料打印-Dong, LN, Liang, MJ, Guo, ZW, Wang, AY, Cai, GP, Yuan, TY, Mi, SL, Sun, W.; “A study on dual-response composite hydrogels based on oriented nanocellulose”, International J. of Bioprinting, 2022, 8(3); 0041.
16. 生物材料打印-Wang, A., Dong, L., Guo, ZW, Sun, W, Mi, S., “A methacrylated hyaluronic acid network reinforced Pluronic F-127 gel for treatment of bacterial keratitis”, Biomedical Materials, Biomed. Mater. 2022, 17 (4),045017.
17. 生物材料打印-Wang C, Yang Y, Ji J, Fang Y, Ouyang L, Zhang L, Sun W. “A Study on Dual-Response Composite Hydrogels Based on Oriented Nanocellulose”, Int J Bioprinting, 2022, 8(3):0041. http://doi.org/10.18063/ijb.v8i3.0041.
18. 生物材料打印-Wang C, Yang Y, Ji J, Fang Y, Ouyang L, Zhang L, Sun W. 3D-Printed Bioresorbable Stent Coated with Dipyridamole-Loaded Nanofber for Restenosis Prevention and Endothelialization. Int J Bioprinting, 2022, 8(2):543. (http://doi.org/10.18063/ijb.v8i2.543.
19. 生物材料打印-Guo, ZW, Xu, YY, Dong, L., Desai, M., Xia, JJ, Liang, MJ, Lee, SW, Mi, SL, Sun, W.; “Design of Functional Hydrogels Using Smart Polymer Based on Elastin-Like Polypeptides”, Chemical Engineering Journal, 2022, Vol 435, Part 3, May 2022, 135155, https://doi.org/10.1016/j.cej.2022.135155.
20. 生物材料打印-皮肤打印 - Yang, Y., Xu, RZ, Ouyang, LL and Sun, W., “Recombinant Human Collagen-Based Bioinks for Skin Tissue Engineering Applications”, 2022,Int J Bioprint, 8(4): 611. Doi: http://doi.org/10.18063/ijb.v8i4.611.
21. 生物材料打印-新型生物材料: Zhao, Hao., Huang, Y., Lv, F., Liu, L., Gu, Q., Wang, S., 2021. Biomimetic 4D-Printed Breathing Hydrogel Actuators by Nanothylakoid and Thermoresponsive Polymer Networks. Advanced Functional Materials.
22. 生物材料-组织工程-Chen, Y., Dong, LN, Kong, B., Huang, Y., Zhong, S., Connon, C., Jiaqi Tan, J., Yang, S., Sun W., and Mi, SL, “Effects of GelMA hydrogel on corneal repair and regeneration in rats”, Translational vision science& technology, Transl Vis Sci Technol. 2021;10(14):25, https://doi.org/10.1167/tvst.10.14.25.
23. 生物材料打印-Fu, ZQ, Angeline, V. and Sun, W. “Evaluation of printing parameters on 3D extrusion printing of Pluronic hydrogels and machine learning guided parameter recommendation”, International Journal of Bioprinting, 2021, 7(4), 179-189, http://doi.org/10.18063/ijb. v7i4.434.
24. 生物材料打印-载药支架-Zhao, CJ, Ji, JY, Yin, TY, Yang, J, Pang, Y. and Sun, W., “Affinity-controlled double-network hydrogel facilitates long-term release of anti-HPV protein”, Biomedicine, 2021 (9), 1298, https://doi.org/10.3390/biomedicines9101298.
25. 生物材料打印-Guo, ZW, Dong, L., Xia, JJ, Mi, SL and Sun, W. “3D Printing Unique Nanoclay-incorporated Double-network Hydrogels for Construction of Complex Tissue Engineering Scaffolds“, Advanced Healthcare Materials, 2021 DOI:10.1002/adhm.202100036.
26. 生物材料打印-新型生物材料: Zhang, R., Tao, Y., Xu, Q., Liu, N., Chen, P., Zhou, Y. and Bai, Z., 2020. Rheological and ion-conductive properties of injectable and self-healing hydrogels based on xanthan gum and silk fibroin. International Journal of Biological Macromolecules, 144, pp.473-482.
27. 体外肿瘤模型打印: Fang, Y., Guo Y., Wu B., Liu, Z., Ye., Xu, Y., Ji, M., Chen, L., Lu, B., Nie, K., Wang, Z., Luo, J., Zhang, T., Sun, W., Xiong, Z., Expanding Embedded 3D Bioprinting Capability for Engineering Complex Organs with Freeform Vascular Networks. Advanced Materials. https://onlinelibrary.wiley.com/doi/10.1002/adma.202205082.
28. 体外肿瘤模型打印-He, JY, et al et al, “Rapid Formation of HepG2 Spheroids in an Oxygen-Permeable Microwell Device to Mimic Early-Stage Hepatocellular Carcinomas for Anti-Tumor Drug Evaluation”, Advanced Healthcare Materials, 2022,WOS入藏号:WOS:000840659800001.
29. 体外肿瘤模型打印-Xie, Feihu, Sun, Lejia, Pang, Pang, Xu, Gang, Jin, Bao, Xu, Haifeng, Lu, Xin, Xu, Yiyao, Du, Shunda, Wang, Yanan, Feng, Shi, Sang, Xinting, Zhong, Shouxian, Wang, Xin, Sun, Wei, Zhao, Haitao, Zhang, Hongbing, Yang, Huayu, Huang, Pengyu, Mao, Yilei, “Three-dimensional bio-printeing of primary human hepatocellular carcinoma for personalized medicine”, Biomaterials, 265 (2021), 120416.
30. 个性化肿瘤模型: Xie, F., Sun, L., Pang, Y., Xu, G., Jin, B., Xu, H., Lu, X., Xu, Y., Du, S., Wang, Y. and Feng, S., 2020. Three-dimensional bio-printing of primary human hepatocellular carcinoma for personalized medicine. Biomaterials, p.120416.
31. 体外肿瘤模型打印: Mao, S., He, J., Zhao, Y., Liu, T., Xie, F., Yang, H., Mao, Y., Pang, Y. and Sun, W., 2020. Bioprinting of patient-derived in vitro intrahepatic cholangiocarcinoma tumor model: establishment, evaluation and anti-cancer drug testing. Biofabrication, 12(4), p.045014.
32. 体外肿瘤模型打印: Swaminathan, S., Hamid, Q., Sun, W. and Clyne, A.M., 2019. Bioprinting of 3D breast epithelial spheroids for human cancer models. Biofabrication, 11(2), p.025003.
33. 体外肿瘤模型打印-Sun, Lejia, Yang, Huayu, Jin, Bao, Xie, Feihu, Jin, Yukai, Zhao, Haitao, Lu, Xin, Sang, Xinting, Mao, Yilei, Wang, Yanan, Zhang, Xinyu, Zhang, Hongbing, Pang, Yuan, Lin, Feng, Sun, Wei, Huang, Pengyu, Application of a 3D Bioprinted Hepatocellular Carcinoma Cell Model in Antitumor Drug Research, Frontiers in Oncology, 2020, 10, WOS:000543201400001.
34. 体外肿瘤模型打印-Pang, Y., Mao, SS., Yao, R., Feng, L., Zhang, KT, Cheng, SJ, Sun, W., “TGF-β induced Epithelial-mesenchymal Transition in advanced cervical tumor model by 3D printing", Biofabrication 2018 http://doi.org/10.1088/1758-5090/aadbde.
35. 骨组织工程支架打印: Ji, J., Wang, C., Xiong, Z., Pang, Y., Sun, W., 2022. 3D-printed scaffold with halloysite nanotubes laden as a sequential drug delivery system regulates vascularized bone tissue healing. Materials Today Advances.
36. 骨组织工程支架: Lu, R., Zhang, W., He, Y., Zhang, S., Fu, Q., Pang, Y. and Sun, W., Ferric ion crosslinking‐based 3D printing of graphene oxide hydrogel and its evaluation as bio‐scaffold in tissue engineering. Biotechnology and Bioengineering.
37. 骨组织工程支架: Gao, X., Wang, H., Luan, S., et al. Low‐Temperature Printed Hierarchically Porous Induced‐Biomineralization Polyaryletherketone Scaffold for Bone Tissue Engineering[J]. Advanced Healthcare Materials, 2022: 2200977.
38. 骨组织工程支架打印: Zhou, J., Tian, Zh., Tian,Q., Peng, L., Li, K., Luo, X., Wang, D., Yang, Z., Jiang, S., Sui, X., Huang, J., Liu, S., Hao, L., Tang, P., Yao, Q., Guo, Q., 2021. 3D bioprinting of a biomimetic meniscal scaffold for application in tissue engineering.Bioactive Materials,Volume 6, Issue 6,2021,1711-1726.
39. 骨组织工程支架打印: Yang, Y., Zhang, Q., Xu, T., Zhang, H., Zhang, M., Lu, L., Hao, Y., Fuh, J.H. and Zhao, X., 2020. Photocrosslinkable nanocomposite ink for printing strong, biodegradable and bioactive bone graft. Biomaterials, 263, p.120378.
40. 骨组织工程支架打印: Lai, Y., Li, Y., Cao, H., Long, J., Wang, X., Li, L., Li, C., Jia, Q., Teng, B., Tang, T. and Peng, J., 2019. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. Biomaterials, 197, pp.207-219.
41. 骨组织工程支架打印: Zhang, B., Pei, X., Song, P., Sun, H., Li, H., Fan, Y., Jiang, Q., Zhou, C. and Zhang, X., 2018. Porous bioceramics produced by inkjet 3D printing: effect of printing ink formulation on the ceramic macro and micro porous architectures control. Composites Part B: Engineering, 155, pp.112-121.
42. 宫颈支架: Zhao, C., Wang, Z., Hua, C., Ji, J., Zhou, Z., Fang, Y., Weng, D.,
Lu, L., Pang, Y. and Sun, W., 2020. Design, modeling and 3D printing of a
personalized cervix tissue implant with protein release function. Biomedical
Materials.
.....